
Introduction

WHITE PAPER

Costs of Encrypted
Computation: Why Fully
homomorphic computations
are Slow

The importance of Data Privacy has increased significantly with
incidents such as the Facebook-Cambridge Analytica data breach,

which harvested the personal data of millions of users, leaving the

credibility of democracy questionable. Even more alarming are cases

where breach involving sensitive and private information like

personal health information or genetic testing information like DNA

can result in irreversible damage for users1. Data privacy breaches

are exerting a lot of pressure on organizations and holding them

accountable for decisions that affect user privacy.

Over the years, data privacy rules in several geographies have

evolved and several countries are strictly mandating organizations

to ensure data privacy regulation and enhance transparency on

storage and processing of customers’ data. Non-compliance to these

regulations is causing huge financial and credibility implications to

organizations2. Currently, 10% of data is covered under privacy

regulations – this is expected to be 65% by 20233. Also, with
organizations increasingly relying on cloud service providers (CSPs),

the major challenge for CSPs is to protect privacy and confidentiality

of the data while still being able to cater to users’ needs.

Fully homomorphic encryption (FHE), an evolving approach with

mathematically provable security guarantees, enables computations

on the encrypted data; thus, offering protection to the privacy of

data. As privacy regulations are critical for both organizations as well

as CSPs, FHE enables both of them to reduce their liabilities.

[1] Why a DNA data breach is much worse than a credit card leak: https://www.theverge.com/2018/6/6/17435166/myheritage-dna-breach-genetic-
 privacy-bioethics
[2] https://gdpr.eu/fines/
[3] https://www.gartner.com/smarterwithgartner/gartner-predicts-for-the-future-of-privacy-2020/

While FHE solves the problem with adequate security guarantees,

it incurs some cost in terms of computational complexity and

memory requirement. As remarked in our previous white paper on

this subject4, FHE based computation is a million times slower than

normal computation on plaintext. We now intuitively describe

several fundamental aspects that hinder performance and how the

computing model in FHE differs from the normal scenario. This can

help explain the limitations in a simpler manner, which in turn can

help users envision new applications in FHE domain.

E(a)+E(b)=E(a+b) and E(a)*E(b)=E(a*b)

WHITE PAPER

Performing arbitrary computations on encrypted data was an open

problem for more than 30 years. During the initial days, partial results

were shown using RSA, Paillier and several other cryptosystems that

could perform only limited number of additions or multiplications but

not both. This hinders us to realize arbitrary functions using these

cryptosystems. Craig Gentry5 described the first ever construction of

FHE which can perform arbitrary computations on the encrypted data

by supporting both additions and multiplications. Later, this was

improved 6, 7, 8, 9 by employing better mathematical advances that led

to more efficient FHE constructions.

FHE supports addition and multiplication as primitive operations.

Figure 1: Operating Model for Homomorphic Encryption

All computations are on encrypted data

Cloud Service Provider

End-user

Encrypted query

Encrypted result

[4] https://www.tcs.com/enabling-secure-computations-on-encrypted-data
[5] Craig Gentry.A fully homomorphic encryption scheme. Ph.d. thesis,2009.
[6] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? In Proceedings of the 3rd ACM workshop
 on Cloud computing security workshop, pages113–124. ACM, 2011
[7] Nigel Smart and Fre Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In Public Key Cryptography-PKC2010,
 pages 420–443.Springer LNCS 6056,2010
[8] Vinod Vaikuntanathan. Computing blindfolded: New developments in fully homomorphic encryption. In FOCS, pages 5–16. IEEE Computer Society, 2011.
[9] Cheon, Jung Hee, et al. "Homomorphic encryption for arithmetic of approximate numbers." International Conference on the Theory and Application
 of Cryptology and Information Security. Springer, Cham, 2017.

These primitive operations can be used to realize arbitrary

computations on encrypted data that can further be used to realize

privacy preserving applications. FHE can be used in wide range of

applications that have critical privacy requirements such as private

search, encrypted database queries, outsourcing computations to

cloud and machine learning. However, at the current state of

research, it is not feasible to perform generic computations using

FHE, but for certain class of problems, we can achieve performance

that is usable today. In this paper, we discuss the factors affecting

the performance of applications in FHE domain.

Algorithms in Encrypted Domain

An algorithm is a procedure with finite sequence of instructions that can

be implemented in a computer program. These computer programs in

turn are used to build an application. In the context of FHE, algorithms (or

applications) are represented as circuits that can be realized using the

primitive FHE operations.

Normally, a program executes instructions with full knowledge of

previously computed results. This helps keep the program efficient by

avoiding computations that were already performed or exiting when

some condition has been satisfied. This is advantageous in the plaintext

domain as it sets the execution path in the right direction and avoids

unnecessary computations. However, in case of homomorphic domain, as

the intermediate states are encrypted, the circuits are oblivious (blind) to

the exact data, thus execution path cannot be controlled. This can be very

expensive in instances where there are enormous amounts of

computations that cannot be circumvented based on an intermediate

state. Therefore, the machine ends up doing a whole lot of computations

resulting in high usage of resources, inhibiting the efficiency of the

program. We describe how these conditions are evaluated in encrypted

domain and costs incurred for realizing such conditions.

Evaluating Encrypted Conditions:

Conditional statements are key decision-making elements that control the

flow of execution in a program by performing different actions depending

on the result of the evaluated conditional expression. A simple example of

conditional execution in any programming platform is an if−then-else

statement where the instructions related to the if case are executed if the

conditional expression is true or the else instructions otherwise. In

plaintext domain, as the intermediate states while evaluating conditions

are in clear, the conditional flow of the program is transparent to the

WHITE PAPER

WHITE PAPER

compiler. However, in homomorphic domain, all the input data

and intermediate evaluation results are encrypted. Although the

condition can be evaluated, the result of the evaluation is still

encrypted and cannot be accessed by compiler. Thus, there is

uncertainty in the decision-making process, resulting in execution

of both the if case and else case, thus domains.

The same issue can be observed in the case of repetitive control

structures such as while or do-while loops that are used to realize

more complex functionality.

Branching Problem:

Let us consider a more complex problem such as the branching

problem (for instance, in a tree data structure) where the

computational overhead is significantly larger in homomorphic

domain when compared to the plain domain. A tree is an abstract

data structure that simulates hierarchical formation of states

(nodes). For simplicity, we consider a binary tree, where smaller

elements are inserted to the left of a root and larger elements are

inserted to the right. To traverse to a target node, we follow a path

defined by the intermediate states.

Figure 2: Conditional execution

If-else statement

Plaintext Domain

Result = F

E(R)=E(T) or E(F)

E(R)=E(C)*E(T) + E(C') * E(F)

E(T)

n

y

E(F)

E(C)

Homomorphic Domain

if(condition)
 return T;
else
 return F;

C – Condition
T – True
F - False

Result = T
 Is

Condition
true?

Figure 3: Traversing to a target element in a tree

Plaintext Domain

Target element: 4 Traversed Path

Homomorphic Domain

WHITE PAPER

For traversal in plaintext domain, only one path is followed according to

the result of the conditions, whereas in homomorphic domain all possible

paths must be executed and evaluated as the result of the condition is

encrypted at any of the intermediate nodes (Figure 3). Therefore, in the

homomorphic domain there is a significant computational overhead.

Therefore, for the tree traversal, though the complexity in plain domain is

O(log n), where n is size of the list, the complexity in homomorphic

domain is O(n), thus yielding exponential difference between the plain

and homomorphic domains.

Tree data structure is usually defined recursively, as a hierarchical

structure of nodes with traversal paths defined from one node to the

other. This analysis illustrates similar complexity overheads for recursion

problems. In the case of recursion, the solution to a problem is based on

iterating smaller instances of the same problem until a terminating

condition is satisfied. In the homomorphic domain, one cannot determine

the result of the terminating condition in the recursion algorithms. To

mitigate this constraint, the program must be provided with some user

defined thresholds for termination. Therefore, there is a limitation which

inhibits the controlled execution of the program thereby increasing

computational overhead.

We will now see few problems where the conditional execution in the

plain and homomorphic domains exhibits significant differences in the

performance of an application.

Search

Search is a well scrutinized problem in computer science. There are

various search algorithms based on the mechanism of search, such as

linear search, binary search and so on. For easier understanding, we

consider the example of linear search understand the computation

overhead involved.

5

2 4 7 9

8

E(5)

E(3)

E(2) E(4) E(7) E(9)

E(8)3

Array:

Result = Compare(E(a),E(c)) + …. Compare(E(e),E(c))

= E(0) + E(0) + E(1) + E(0) + E(0)

= E(0+0+1+0+0)

= E(1)

Target element:

Figure 4: Encrypted Linear Search

WHITE PAPER

Linear search is an algorithm where a target element is searched in a
given list by sequentially comparing the target to each element in the list.
The search operation terminates when the target is found in the list. In
plain domain, the linear search is straightforward and in the best case, the
target element can be found at the start of the list. As soon as the element
is found, the search operation can be terminated. However, in the
homomorphic domain, as both the list and target element are encrypted,
the program cannot determine whether an element is found at a
particular position. Therefore, one needs to iterate through the entire list
to find out if the target is in the list (Figure 4). The target is compared with
each and every element in the list and the encrypted comparison results
are aggregated homomorphically to compute the end result (Figure 2).
Hence, the complexity of the computation is always O(n), which is the
worst-case complexity for linear search in the plain domain. Similarly, we
can generalize this overhead for other search algorithms as well that also
perform with worst-case complexity in the homomorphic domain.

Sorting

Sorting is yet another important problem and many applications require
frequent ordering of data to either find minimum, maximum or data in a
certain range. The fundamental building blocks for any sorting algorithm
are comparison and swap operations. Most known algorithms for sorting
are the data dependent algorithms such as bubble sort, insertion sort,
quick sort or merge sort. The complexity of these algorithms depends on
the order of input. While sorting integers in the plaintext domain, the
elements are swapped based on the comparison of the elements in
certain indices. However, in the homomorphic domain, as the elements
are encrypted, we cannot determine the comparison output, thus we do
not know whether a swap operation is to be performed. Therefore, in the
homomorphic domain, comparison and swap operations are combined
into an oblivious multiplexer circuit to blindly operate on the encrypted
data. The sorting algorithm cannot skip unnecessary swaps or

E(c)

E(a) E(b) E(c) E(d) E(e)

WHITE PAPER

Figure 5: Comparison and Swap Circuit in FHE domain

comparisons, thus, increasing the complexity of the sorting (Figure 5).

To swap two encrypted numbers E(a) and E(b) using encrypted
comparison result E(C), where E(C) ={E(0) if a>=b; E(1) else if a<b}, the
compare and swap oblivious circuit can be described as follows

E(temp)= E(C) *E(a)+ E(C’)*E(b);

E(b)=E(C’)*E(a)+ E(C) *E(b);

E(a)=E(temp);

Note: E(C’) is compliment of E(C) and can be computed from E(C)
homomorphically.

Assuming that we are sorting in ascending order, if E(a) < E(b), E(a) and
E(b) are homomorphically swapped. This swap operation is oblivious to
the compiler, meaning the compiler does not know if the two inputs are
swapped, which is very important to preserve security of the FHE
schemes.

 To analyze the complexity overheads induced in the FHE domain, let us
consider the simplest sorting algorithm, the Bubble sort which works by
making passes through the list. In each pass, adjacent elements are
compared and swapped based on the comparison result; the smaller
element moves to a lower index position. Since all the elements are
encrypted, the algorithm is oblivious of the comparison result and ends
up executing the conditional circuit described above for each pair of
elements, which could have been avoided if the comparison results are
known to the compiler. Therefore, it takes worst case complexity for the
algorithms independent of the input. Similarly, for other data dependent
sorting algorithms, average case complexity is same as the worst-case
complexity in the encrypted domain10.

[10] N. Emmadi, P. Gauravaram, H. Narumanchi and H. Syed, "Updates on Sorting of Fully Homomorphic Encrypted Data," 2015 International
 Conference on Cloud Computing Research and Innovation (ICCCRI), Singapore, 2015, pp. 19-24, doi: 10.1109/ICCCRI.2015.28.

Larger number

Comparator

Smaller number

E(a)

E(b)E(0)
E(a)

E(b) /E(1) E(a)

E(b)

WHITE PAPER

In contrast to these classical sorting algorithms, there are some algorithms
called sorting networks such as Bitonic sort and Odd-Even Merge sort
which are data independent where the number of comparisons is
constant and independent on the order of input. Hence, these algorithms
have better performance in FHE domain than data dependent sorting
algorithms.

The following table summarizes the complexities of sorting algorithms:

Towards Realizing Machine Learning Applications
based on FHE
In the recent years, Machine learning (ML) has revolutionized several
industries such as health, finance, insurance, retail, telecom, etc. Machine
Learning provides the ability for a computer to learn a task without
explicit programming. This ability is imparted to the machine by training
it with sample data. Once the system learns insights based on the input
data, it can then make appropriate predictions on new queries. These
machine learning algorithms depend on large datasets to train their
models for accurate predictions. Hence, the two important components
of any machine learning application can be broadly classified into Training
and Inference.

The machine learning models are often deployed on cloud to cater to the
needs of users such as predictions or classifications. Considering the
magnitude of data involved in the machine learning applications, privacy
of the data is critical, both for training as well as for inference. To address
this, ML research has gained momentum towards developing
privacy-preserving machine learning algorithms modelled using FHE.
These types of applications are important amid growing concern of data
privacy and increase in regulations such as GDPR, CCPA etc. These
applications will be beneficial for both end-users as well the model
owner, as they reduce data privacy related liabilities. The privacy
preserving applications can employ either or both of private learning
and private inference.

Algorithm Plaintext domain (best case) FHE domain (any case)

Bubble sort

Insertion sort

Quick sort

Merge sort

Bitonic sort

Odd even merge sort

O(n)

O(n)

O(n log n)

O(n log n)

O(log^2 n)

O(log^2 n)

O(n^2)

O(n^2)

O(n^2)

O(n^2)

O(n log^2 n)

O(n log^2 n)

WHITE PAPER

Privacy Preserving Learning
In the privacy preserving learning approach, the machine learning models
are trained with the data encrypted with FHE. The model on the server
can learn from the data without learning anything about the data.
Consider the case of an enterprise that wishes to employ a third-party
proprietary Machine Learning capability. The enterprise can utilize the
third-party machine learning model by training with the encrypted data
without revealing its data to that party, at the same time the server does
not have to reveal any information about the Machine Learning algorithm
to the client.

Privacy Preserving Inference

Privacy preserving inference based on FHE [10] can protect privacy of the

queries in machine learning applications. An already trained model on the

cloud can be queried privately by a user to obtain a prediction or

classification. An example of such a case can be any health care

application that can diagnose an ailment based on input health

parameters. To preserve privacy of patients’ health data, the model can

be queried privately using FHE.

As in the case of other applications, machine learning applications also

suffer from additional computational overheads in the homomorphic

domain. FHE makes the computations expensive both in terms of time

and memory. The most important component of machine learning

applications are the cost functions. While training a machine learning

model, a cost function is used to quantify error deviation from the

predicted values to the expected values. In order to improve the accuracy

of the model, the cost function must be minimized. This is done by

evaluating the cost function iteratively and checking if the function

converged to a minimum for certain input parameters. However, in the

case of encrypted domain, it is not possible for the algorithm to check if

the cost function converged. Hence, the algorithm is iterated up to a

certain threshold and expected to converge. This may impact accuracy

in certain cases if the thresholds are chosen inappropriately.

Another important component of a machine learning algorithm is an

activation function in artificial neural networks (ANN). A neural network is

a computing system that simulates biological neural networks of a brain.

The neural networks are composed of nodes called neurons that are

connected to each other. An activation function determines the output of

a neuron in a neural network. These functions induce non-linearity in the

neural network which is important for the network to learn complex

patterns about the data and accurately predict and distinguish the data

[11] Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based on the approximate homomorphic encryption. BMC Med.
 Genom.11(4),83 (2018)

WHITE PAPER

from other data points. In the plaintext domain, these activation functions

can be computed using their corresponding high degree polynomials.

However, using these polynomials as is in the FHE domain is

computationally expensive. Therefore, in the FHE domain, these functions

are realized using lower degree approximation polynomials that demand

lower computational resources. These approximation polynomials give

activation output with certain amount of loss in accuracy but with better

performance.

Considering the current state of FHE schemes and the computational

costs involved, it is not practical to realize arbitrary machine learning

models with FHE. Certain class of applications such as neural networks

that have fewer number of layers can still achieve practical performance

and hence more suitable for FHE domain. The challenge lies in realizing

these applications using approximation functions with minimal loss in

accuracy as well as performance.

Conclusion

Enterprises are increasingly wary of the privacy risks and are inclined

towards solutions that preserve privacy of the data with provable security

guarantees. Although Fully Homomorphic Encryption is one of the most

promising solution to mitigate these risks, it still requires significant

advancements in terms of performance. In this paper, we described the

fundamental aspects behind huge complexity for applications in the

homomorphic domain. When compared to plaintext domain, the

computations in the FHE domain are expensive due to obliviousness of

the computational model. We illustrated the complexity overheads using

searching and sorting techniques in the FHE domain. We also described

the impact of encrypted computations in the privacy preserving machine

learning applications.

Although the computational costs incurred due to encrypted

computations are significant, the returns in terms of privacy guarantees

are enormous. With more advances in FHE research, the performance of

applications can be significantly improved. Since the first FHE scheme

proposed in 2009, that is 100 trillion times slower than the plain domain,

there has been significant progress in the past decade, reaching million

times level currently. Though the progress is quite optimistic and there

will be further improvements to the schemes, the fundamental

computational model in the encrypted domain will always induce

significant additional computational costs. We expect that the

understanding from this paper gives insights into envisioning applications

suitable for encrypted domain.

WHITE PAPER

About Tata Consultancy Services Ltd (TCS)

Tata Consultancy Services is an IT services, consulting and business solutions organization that

delivers real results to global business, ensuring a level of certainty no other firm can match.

TCS offers a consulting-led, integrated portfolio of IT and IT-enabled infrastructure, engineering

and assurance services. This is delivered through its unique Global Network Delivery ModelTM,

recognized as the benchmark of excellence in software development. A part of the Tata Group,

India’s largest industrial conglomerate, TCS has a global footprint and is listed on the National

Stock Exchange and Bombay Stock Exchange in India.

For more information, visit us at www.tcs.com

C
or

p
or

at
e

M
ar

ke
tin

g
| D

es
ig

n
Se

rv
ic

es
 |

M
 |

12
 |

20

Experience certainty. IT Services
Business Solutions
Consulting

All content / information present here is the exclusive property of Tata Consultancy Services Limited (TCS). The content / information contained here is
correct at the time of publishing. No material from here may be copied, modified, reproduced, republished, uploaded, transmitted, posted or distributed
in any form without prior written permission from TCS. Unauthorized use of the content / information appearing here may violate copyright, trademark
and other applicable laws, and could result in criminal or civil penalties. Copyright © 2020 Tata Consultancy Services Limited

Contact

Visit the Research and Innovation page on www.tcs.com

Email: innovation.info@tcs.com

Subscribe to TCS White Papers
TCS.com RSS: http://www.tcs.com/rss_feeds/Pages/feed.aspx?f=w
Feedburner: http://feeds2.feedburner.com/tcswhitepapers

About The Authors

Harika Narumanchi

Harika Narumanchi is a researcher in the

cybersecurity and privacy research area at

TCS Research and Innovation (R&I). She

joined TCS R&I in 2014, with research

broadly focusing on applying cryptography,

machine learning and blockchain solutions

to business-oriented scenarios. She

graduated from the Jawaharlal Nehru

Technological University, Hyderabad, India,

with a Master’s in information technology,

specialized in information security.

Nitesh Emmadi

Nitesh Emmadi is a researcher in the

CyberSecurity and Privacy Research Group

at TCS Innovation Labs, India. His areas of

research mostly include computations on

encrypted data, with a broader interest in

application security, applied cryptography,

machine learning and blockchains. He looks

closely into the practical side of novel

systems and provides consulting services to

evaluate and build products for his

organization. Prior to joining TCS, Nitesh

received his Master’s degree in Information

Technology, specialized in Information

Security, from International Institute of

Information Technology, Hyderabad, India.

Dr Praveen Gauravaram

Dr Praveen Gauravaram is a Senior Scientist

at Tata Consultancy Services (TCS) Australia

leading TCS’s Research & Innovation

partnership with Cyber Security CRC.

Praveen has a PhD in Cryptology from

Queensland University of Technology and

has held scientific positions in India, Europe

and Australia. In 2010, Praveen was a

recipient of young elite researcher award

from the Danish Agency for Science,

Technology and Innovation. Praveen has

published more than fifty scientific and

consulting articles in cryptology and cyber

security. Praveen has honorary academic

titles of Adjunct Associate Professor with the

University of New South Wales and Adjunct

Professor with Deakin University

respectively.

https://www.tcs.com/research-and-innovation
https://www.tcs.com/
mailto:innovation.info@tcs.com

