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Costs of Encrypted 
Computation: Why Fully 
homomorphic computations 
are Slow

The importance of Data Privacy has increased significantly with 
incidents such as the Facebook-Cambridge Analytica data breach, 

which harvested the personal data of millions of users, leaving the 

credibility of democracy questionable. Even more alarming are cases 

where breach involving sensitive and private information like 

personal health information or genetic testing information like DNA 

can result in irreversible damage for users1. Data privacy breaches 

are exerting a lot of pressure on organizations and holding them 

accountable for decisions that affect user privacy.
 
Over the years, data privacy rules in several geographies have 

evolved and several countries are strictly mandating organizations 

to ensure data privacy regulation and enhance transparency on 

storage and processing of customers’ data. Non-compliance to these 

regulations is causing huge financial and credibility implications to 

organizations2.  Currently, 10% of data is covered under privacy 

regulations – this is expected to be 65% by 20233. Also, with  
organizations increasingly relying on cloud service providers (CSPs), 

the major challenge for CSPs is to protect privacy and confidentiality 

of the data while still being able to cater to users’ needs. 

Fully homomorphic encryption (FHE), an evolving approach with 

mathematically provable security guarantees, enables computations 

on the encrypted data; thus, offering protection to the privacy of 

data. As privacy regulations are critical for both organizations as well 

as CSPs, FHE enables both of them to reduce their liabilities.  

[1] Why a DNA data breach is much worse than a credit card leak: https://www.theverge.com/2018/6/6/17435166/myheritage-dna-breach-genetic-
       privacy-bioethics
[2] https://gdpr.eu/fines/
[3] https://www.gartner.com/smarterwithgartner/gartner-predicts-for-the-future-of-privacy-2020/



While FHE solves the problem with adequate security guarantees,  

it incurs some cost in terms of computational complexity and 

memory requirement. As remarked in our previous white paper on 

this subject4, FHE based computation is a million times slower than 

normal computation on plaintext. We now intuitively describe 

several fundamental aspects that hinder performance and how the 

computing model in FHE differs from the normal scenario. This can 

help explain the limitations in a simpler manner, which in turn can 

help users envision new applications in FHE domain.

E(a)+E(b)=E(a+b) and E(a)*E(b)=E(a*b)
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Performing arbitrary computations on encrypted data was an open 

problem for more than 30 years. During the initial days, partial results 

were shown using RSA, Paillier and several other cryptosystems that 

could perform only limited number of additions or multiplications but 

not both. This hinders us to realize arbitrary functions using these 

cryptosystems. Craig Gentry5 described the first ever construction of 

FHE which can perform arbitrary computations on the encrypted data 

by supporting both additions and multiplications. Later, this was 

improved 6, 7, 8, 9 by employing better mathematical advances that led 

to more efficient FHE constructions. 

FHE supports addition and multiplication as primitive operations. 

Figure 1: Operating Model for Homomorphic Encryption
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[4] https://www.tcs.com/enabling-secure-computations-on-encrypted-data
[5] Craig Gentry.A fully homomorphic encryption scheme. Ph.d. thesis,2009.
[6] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan.   Can homomorphic encryption be practical?  In Proceedings of the 3rd ACM workshop 
      on Cloud computing security workshop, pages113–124. ACM, 2011
[7] Nigel Smart and Fre Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In Public Key Cryptography-PKC2010, 
       pages 420–443.Springer LNCS 6056,2010
[8] Vinod Vaikuntanathan. Computing blindfolded: New developments in fully homomorphic encryption. In FOCS, pages 5–16. IEEE Computer Society, 2011.
[9] Cheon, Jung Hee, et al. "Homomorphic encryption for arithmetic of approximate numbers." International Conference on the Theory and Application 
       of Cryptology and Information Security. Springer, Cham, 2017.



These primitive operations can be used to realize arbitrary  

computations on encrypted data that can further be used to realize 

privacy preserving applications. FHE can be used in wide range of 

applications that have critical privacy requirements such as private 

search, encrypted database queries, outsourcing computations to 

cloud and machine learning. However, at the current state of 

research, it is not feasible to perform generic computations using 

FHE, but for certain class of problems, we can achieve performance 

that is usable today. In this paper, we discuss the factors affecting 

the performance of applications in FHE domain.

Algorithms in Encrypted Domain

An algorithm is a procedure with finite sequence of instructions that can 

be implemented in a computer program. These computer programs in 

turn are used to build an application. In the context of FHE, algorithms (or 

applications) are represented as circuits that can be realized using the 

primitive FHE operations. 

Normally, a program executes instructions with full knowledge of 

previously computed results. This helps keep the program efficient by 

avoiding computations that were already performed or exiting when 

some condition has been satisfied. This is advantageous in the plaintext 

domain as it sets the execution path in the right direction and avoids 

unnecessary computations. However, in case of homomorphic domain, as 

the intermediate states are encrypted, the circuits are oblivious (blind) to 

the exact data, thus execution path cannot be controlled. This can be very 

expensive in instances where there are enormous amounts of 

computations that cannot be circumvented based on an intermediate 

state. Therefore, the machine ends up doing a whole lot of computations 

resulting in high usage of resources, inhibiting the efficiency of the 

program. We describe how these conditions are evaluated in encrypted 

domain and costs incurred for realizing such conditions.

Evaluating Encrypted Conditions:

Conditional statements are key decision-making elements that control the 

flow of execution in a program by performing different actions depending 

on the result of the evaluated conditional expression. A simple example of 

conditional execution in any programming platform is an if−then-else 

statement where the instructions related to the if case are executed if the 

conditional expression is true or the else instructions otherwise. In 

plaintext domain, as the intermediate states while evaluating conditions 

are in clear, the conditional flow of the program is transparent to the 
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compiler. However, in homomorphic domain, all the input data 

and intermediate evaluation results are encrypted. Although the 

condition can be evaluated, the result of the evaluation is still 

encrypted and cannot be accessed by compiler. Thus, there is 

uncertainty in the decision-making process, resulting in execution 

of both the if case and else case, thus domains.

The same issue can be observed in the case of repetitive control 

structures such as while or do-while loops that are used to realize 

more complex functionality. 

Branching Problem:

Let us consider a more complex problem such as the branching 

problem (for instance, in a tree data structure) where the 

computational overhead is significantly larger in homomorphic 

domain when compared to the plain domain. A tree is an abstract 

data structure that simulates hierarchical formation of states 

(nodes). For simplicity, we consider a binary tree, where smaller 

elements are inserted to the left of a root and larger elements are 

inserted to the right. To traverse to a target node, we follow a path 

defined by the intermediate states.

Figure 2: Conditional execution
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Figure 3: Traversing to a target element in a tree
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For traversal in plaintext domain, only one path is followed according to 

the result of the conditions, whereas in homomorphic domain all possible 

paths must be executed and evaluated as the result of the condition is 

encrypted at any of the intermediate nodes (Figure 3). Therefore, in the 

homomorphic domain there is a significant computational overhead. 

Therefore, for the tree traversal, though the complexity in plain domain is 

O(log n), where n is size of the list, the complexity in homomorphic 

domain is O(n), thus yielding exponential difference between the plain 

and homomorphic domains. 

Tree data structure is usually defined recursively, as a hierarchical 

structure of nodes with traversal paths defined from one node to the 

other. This analysis illustrates similar complexity overheads for recursion 

problems. In the case of recursion, the solution to a problem is based on 

iterating smaller instances of the same problem until a terminating 

condition is satisfied. In the homomorphic domain, one cannot determine 

the result of the terminating condition in the recursion algorithms. To 

mitigate this constraint, the program must be provided with some user 

defined thresholds for termination.  Therefore, there is a limitation which 

inhibits the controlled execution of the program thereby increasing 

computational overhead.

We will now see few problems where the conditional execution in the 

plain and homomorphic domains exhibits significant differences in the 

performance of an application.

Search 

Search is a well scrutinized problem in computer science. There are 

various search algorithms based on the mechanism of search, such as 

linear search, binary search and so on. For easier understanding, we 

consider the example of linear search understand the computation 

overhead involved.
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Array:

Result = Compare(E(a),E(c))  + …. Compare(E(e),E(c)) 

= E(0) + E(0) + E(1) + E(0) + E(0)

= E(0+0+1+0+0)

= E(1)

Target element:

Figure 4: Encrypted Linear Search
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Linear search is an algorithm where a target element is searched in a 
given list by sequentially comparing the target to each element in the list. 
The search operation terminates when the target is found in the list.  In 
plain domain, the linear search is straightforward and in the best case, the 
target element can be found at the start of the list. As soon as the element 
is found, the search operation can be terminated. However, in the 
homomorphic domain, as both the list and target element are encrypted, 
the program cannot determine whether an element is found at a 
particular position. Therefore, one needs to iterate through the entire list 
to find out if the target is in the list (Figure 4). The target is compared with 
each and every element in the list and the encrypted comparison results 
are aggregated homomorphically to compute the end result (Figure 2). 
Hence, the complexity of the computation is always O(n), which is the 
worst-case complexity for linear search in the plain domain. Similarly, we 
can generalize this overhead for other search algorithms as well that also 
perform with worst-case complexity in the homomorphic domain.

Sorting 

Sorting is yet another important problem and many applications require 
frequent ordering of data to either find minimum, maximum or data in a 
certain range. The fundamental building blocks for any sorting algorithm 
are comparison and swap operations. Most known algorithms for sorting 
are the data dependent algorithms such as bubble sort, insertion sort, 
quick sort or merge sort. The complexity of these algorithms depends on 
the order of input. While sorting integers in the plaintext domain, the 
elements are swapped based on the comparison of the elements in 
certain indices. However, in the homomorphic domain, as the elements 
are encrypted, we cannot determine the comparison output, thus we do 
not know whether a swap operation is to be performed. Therefore, in the 
homomorphic domain, comparison and swap operations are combined 
into an oblivious multiplexer circuit to blindly operate on the encrypted 
data. The sorting algorithm cannot skip unnecessary swaps or 

E(c)

E(a) E(b) E(c) E(d) E(e)
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Figure 5: Comparison and Swap Circuit in FHE domain

comparisons, thus, increasing the complexity of the sorting (Figure 5). 

To swap two encrypted numbers E(a) and E(b) using encrypted 
comparison result E(C), where E(C) ={E(0) if a>=b; E(1) else if a<b}, the 
compare and swap oblivious circuit can be described as follows

E(temp)= E(C) *E(a)+ E(C’)*E(b);

E(b)=E(C’)*E(a)+ E(C) *E(b);

E(a)=E(temp);

Note: E(C’) is compliment of E(C) and can be computed from E(C) 
homomorphically.

Assuming that we are sorting in ascending order, if E(a) < E(b), E(a) and 
E(b) are homomorphically swapped. This swap operation is oblivious to 
the compiler, meaning the compiler does not know if the two inputs are 
swapped, which is very important to preserve security of the FHE 
schemes.

 To analyze the complexity overheads induced in the FHE domain, let us 
consider the simplest sorting algorithm, the Bubble sort which works by 
making passes through the list. In each pass, adjacent elements are 
compared and swapped based on the comparison result; the smaller 
element moves to a lower index position. Since all the elements are 
encrypted, the algorithm is oblivious of the comparison result and ends 
up executing the conditional circuit described above for each pair of 
elements, which could have been avoided if the comparison results are 
known to the compiler.  Therefore, it takes worst case complexity for the 
algorithms independent of the input. Similarly, for other data dependent 
sorting algorithms, average case complexity is same as the worst-case 
complexity in the encrypted domain10.

[10] N. Emmadi, P. Gauravaram, H. Narumanchi and H. Syed, "Updates on Sorting of Fully Homomorphic Encrypted Data," 2015 International 
         Conference on Cloud Computing Research and Innovation (ICCCRI), Singapore, 2015, pp. 19-24, doi: 10.1109/ICCCRI.2015.28.
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In contrast to these classical sorting algorithms, there are some algorithms 
called sorting networks such as Bitonic sort and Odd-Even Merge sort 
which are data independent where the number of comparisons is 
constant and independent on the order of input. Hence, these algorithms 
have better performance in FHE domain than data dependent sorting 
algorithms. 

The following table summarizes the complexities of sorting algorithms:

Towards Realizing Machine Learning Applications 
based on FHE
In the recent years, Machine learning (ML) has revolutionized several 
industries such as health, finance, insurance, retail, telecom, etc. Machine 
Learning provides the ability for a computer to learn a task without 
explicit programming. This ability is imparted to the machine by training  
it with sample data. Once the system learns insights based on the input 
data, it can then make appropriate predictions on new queries. These 
machine learning algorithms depend on large datasets to train their 
models for accurate predictions. Hence, the two important components  
of any machine learning application can be broadly classified into Training 
and Inference. 

The machine learning models are often deployed on cloud to cater to the 
needs of users such as predictions or classifications. Considering the 
magnitude of data involved in the machine learning applications, privacy 
of the data is critical, both for training as well as for inference. To address 
this, ML research has gained momentum towards developing 
privacy-preserving machine learning algorithms modelled using FHE. 
These types of applications are important amid growing concern of data 
privacy and increase in regulations such as GDPR, CCPA etc.  These 
applications will be beneficial for both end-users as well the model  
owner, as they reduce data privacy related liabilities. The privacy 
preserving applications can employ either or both of private learning  
and private inference.

Algorithm Plaintext domain (best case) FHE domain (any case)

Bubble sort

Insertion sort

Quick sort

Merge sort

Bitonic sort

Odd even merge sort

O(n)

O(n)

O(n log n)

O(n log n)

O(log^2 n)

O(log^2 n)

O(n^2)

O(n^2)

O(n^2)

O(n^2)

O(n log^2 n)

O(n log^2 n)
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Privacy Preserving Learning
In the privacy preserving learning approach, the machine learning models 
are trained with the data encrypted with FHE. The model on the server  
can learn from the data without learning anything about the data. 
Consider the case of an enterprise that wishes to employ a third-party 
proprietary Machine Learning capability. The enterprise can utilize the 
third-party machine learning model by training with the encrypted data 
without revealing its data to that party, at the same time the server does 
not have to reveal any information about the Machine Learning algorithm 
to the client.

Privacy Preserving Inference

Privacy preserving inference based on FHE [10] can protect privacy of the 

queries in machine learning applications. An already trained model on the 

cloud can be queried privately by a user to obtain a prediction or 

classification. An example of such a case can be any health care 

application that can diagnose an ailment based on input health 

parameters. To preserve privacy of patients’ health data, the model can  

be queried privately using FHE.

As in the case of other applications, machine learning applications also 

suffer from additional computational overheads in the homomorphic 

domain. FHE makes the computations expensive both in terms of time 

and memory. The most important component of machine learning 

applications are the cost functions. While training a machine learning 

model, a cost function is used to quantify error deviation from the 

predicted values to the expected values. In order to improve the accuracy 

of the model, the cost function must be minimized. This is done by 

evaluating the cost function iteratively and checking if the function 

converged to a minimum for certain input parameters. However, in the 

case of encrypted domain, it is not possible for the algorithm to check if 

the cost function converged. Hence, the algorithm is iterated up to a 

certain threshold and expected to converge. This may impact accuracy  

in certain cases if the thresholds are chosen inappropriately.

Another important component of a machine learning algorithm is an 

activation function in artificial neural networks (ANN). A neural network is 

a computing system that simulates biological neural networks of a brain. 

The neural networks are composed of nodes called neurons that are 

connected to each other. An activation function determines the output of 

a neuron in a neural network. These functions induce non-linearity in the 

neural network which is important for the network to learn complex 

patterns about the data and accurately predict and distinguish the data 

[11] Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based on the approximate homomorphic encryption. BMC Med. 
         Genom.11(4),83 (2018)
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from other data points. In the plaintext domain, these activation functions 

can be computed using their corresponding high degree polynomials. 

However, using these polynomials as is in the FHE domain is 

computationally expensive. Therefore, in the FHE domain, these functions 

are realized using lower degree approximation polynomials that demand 

lower computational resources. These approximation polynomials give 

activation output with certain amount of loss in accuracy but with better 

performance.

Considering the current state of FHE schemes and the computational 

costs involved, it is not practical to realize arbitrary machine learning 

models with FHE. Certain class of applications such as neural networks 

that have fewer number of layers can still achieve practical performance 

and hence more suitable for FHE domain. The challenge lies in realizing 

these applications using approximation functions with minimal loss in 

accuracy as well as performance. 

Conclusion

Enterprises are increasingly wary of the privacy risks and are inclined 

towards solutions that preserve privacy of the data with provable security 

guarantees. Although Fully Homomorphic Encryption is one of the most 

promising solution to mitigate these risks, it still requires significant 

advancements in terms of performance.  In this paper, we described the 

fundamental aspects behind huge complexity for applications in the 

homomorphic domain. When compared to plaintext domain, the 

computations in the FHE domain are expensive due to obliviousness of 

the computational model. We illustrated the complexity overheads using 

searching and sorting techniques in the FHE domain. We also described 

the impact of encrypted computations in the privacy preserving machine 

learning applications. 

Although the computational costs incurred due to encrypted 

computations are significant, the returns in terms of privacy guarantees 

are enormous. With more advances in FHE research, the performance of 

applications can be significantly improved. Since the first FHE scheme 

proposed in 2009, that is 100 trillion times slower than the plain domain, 

there has been significant progress in the past decade, reaching million 

times level currently. Though the progress is quite optimistic and there 

will be further improvements to the schemes, the fundamental 

computational model in the encrypted domain will always induce 

significant additional computational costs. We expect that the 

understanding from this paper gives insights into envisioning applications 

suitable for encrypted domain.
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