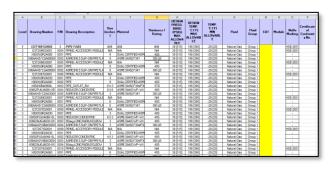

Engineering

TCS - Cummins Confidential

KBE Automation - Building Code Evaluation

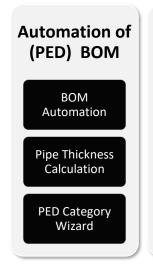
Business Problem: Unavailability of single source of platform to evaluate key site load factors during ITO and OTR.


TCS Solution: A digital tool using Angular JAVA for evaluating Seismic, Wind, and Snow load factor for Gas, Steam Turbine and its accessories. Enables informed decision making based on site considerations.

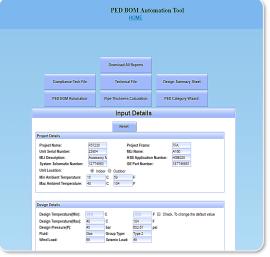
Automation of Pressure Equipment Directive (PED) BOM and Report

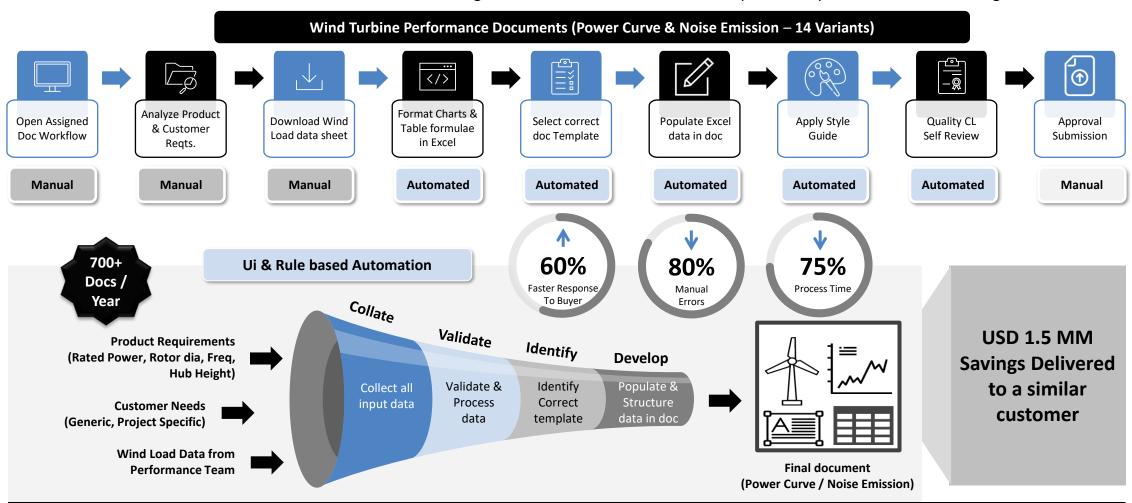
Move away from legacy manual processes to automated processes

Legacy Process



nput the value			R STAINLES ange fill	SS STEEL						
Pipe Description	Nom Pipe Size	Sch	Outside Diamete r D (in)	Wall Thickness (in)	Wall Thick Reduce d 12.5%	t (in)	c (in)	tm (in)	Margin = (Avail Min)	ls pipe thickness sufficient
Straight Pipe										
Straight Fipe	16	40S	16.000	0.375	0.328	0.072	0.000	0.072	0.257	YES
LR Bends		R1	R1/D	Linside	Loutside	t inside	t outside	tm	Margin	
	16.000	24.000	1.500	1.250	0.875	0.089	0.063	0.089	0.786	YES
SR Bends		R1	R1/D	Linside	Loutside	t inside	t outside	tm	Margin	
	16.000	16.000	1.000	1.500	0.833	0.107	0.060	0.107	0.726	YES
		R1	R1/D	Linside	Loutside	t inside	t outside	tm	Margin	
	16.000	32.000	2.000	1.167	0.900	0.083	0.064	0.083	0.817	YES
Straight Pipe										
	3	40S	3.500	0.216	0.189	0.016	0.000	0.016	0.173	YES
LR Bends		R1	R1/D	Linside	I outside	t inside	t outside	tm	Margin	
	3.000	4.500	1.286	1.318	0.860	0.094	0.003	0.094	0.766	YES
SR Bends		R1	R1/D	Linside	Loutside	t inside	t outside	tm	Margin	
	3.000	3.000	0.857	1.700	0.816	0.121	0.003	0.121	0.694	YES
		R1	R1/D	Linside	I outside	t inside	t outside	tm	Margin	
	3.000	6.000	1.714	1,206	0.887	0.086	0.003	0.086	0.801	YES


Automated Process



Piping			
Allowable Stress Cold(M Allowable Stress Hot(Ma Material Used For Piping	x)(K ASME B31.3) (Sh)):	15 ksi 15 ksi 304/F304 Check, To o	15000 psi 15000 psi hange the default value
Flange			
Available Materials ASME SA182 F316/F316	L Add all ASI	ected Materials ME SA182 F304/F304L ME SA182 F347/F347H	7 Fireb 1 Down
Fitting			
Material :	A403 WP304/304	☐ Check,	To change the default value
Quality Factor (A-1B ASME			To change the default value
_	tion Factor(ASME B31.3) (W):		. To change the default value
Coefficient(A-1B ASME 31. Corrosion Allowance (c):			To change the default value To change the default value
	ф Add		xlsx files only And File should be in

Technical Publications – Performance Docs Automation Solution

End to end automation of technical contents management workflows related to product performance management

Helps in Technical and Service literature creation and management across the business units

Automation of Piping Stress Analysis Report Generation

Business Problem

- Piping stress analysis for all critical lines of Gas turbine accessories for GE Power is being carried out in Autopipe and the final output will be in the form of a report (MS Word). For Report creation, it takes an average of 48 hours to generate the report.
- For complex piping, this report submission and reworking the report, any change done in the model during the review takes more time.
- Often, we face challenges in extracting Forces and moments, Critical nodes, and Displacement extraction.
- Currently, we manually analyze and enter the values from Auto pipe in the report. Every Report consumes more time for creation and update (If any) based on review comments.

TCS Solution

Developed an automation tool using VBA to capture Displacement, Forces & moment, and Critical Node directly from Autopipe output file (.CSV). Processing the key displacement data, consolidating them and generating results are automated as shown below.

- Result displacement in nodes with max values indicated with load cases.
- Critical nodes in dynamic analysis are identified and reported for corresponding modes and shapes.
- Forces and moments for required node indicated with load cases.

	FORCES AND MOMENTS									
SUPPORTS -		FORCES								
	Fx	Fy	Fz	Result	Mx	My	Mz	Result		
	Max	Max	Max		Max	Max	Max			
A24	-125	119	-351	361	0	0	0	0		
H24	GT4P4[1]	GE3[1]	GE1{1}	GE1(1)	Gravity(1)	Gravity(1)	Gravity(1)	Gravity(1)		
B34	0	0	0	0	0	0	0	0		
834	Gravity(1)	Gravity(1)	Gravity(1)	Gravity(1)	Gravity{1}	Gravity{1}	Gravity(1)	Gravity(1)		
A60	-180	-114	-594	621	0	0	0	0		
MOD	GT10P10{1}	GE4[1]	GT10P10[1]	GT10P10{1}	Gravity{1}	Gravity[1]	Gravity{1}	Gravity[1]		

Business Value

- 3x faster turnaround time to make critical piping design modifications
- Improved quality as a result of 100% automation

• 80% cycle time reduction in report generation

\$ 800K Savings for a similar customer