Abstract

Utility companies in developed economies are looking to leverage the Internet of Things (IoT) to improve the development and operation of smart grids. However, an IoT setup cannot exist as a standalone web and needs many supporting IT services, translating into opportunities for IT service providers and benefits for utilities and their consumers.
The Role of IoT in Smart Grid Deployment

Since 1999, when the idea was first presented by Massachusetts Institute of Technology¹, IoT has been adopted by governments in the US, Japan, China, Korea, and the European Union for various purposes. For instance, all utilities in the EU must compulsorily have smart meters. The US government also began transitioning to smart grid technology from 2007.²

Making smart grids 'smarter' with the IoT

Deploying multi-level implementations
The IoT’s IPv6 addressing system helps cope with the multi-layered architecture of the smart grid at multiple levels (the object layer level, communication layer level, and application layer level). This way, smart meters can communicate with a host of other objects and applications connected through the smart network.

Overcoming data readability and interoperability challenges
Deploying smart grids involves integrating numerous IoT sensors into the infrastructure. Since these devices communicate with each other, the challenges of data readability and interoperability increase.

Managing load and demand response on a smart grid
To minimize human intervention and lower electricity consumption and costs, IoT allows embedding each device in the smart grid with a wireless sensor that responds optimally to environmental changes. For instance, wireless sensors are used to remotely operate devices, such as switching on/off the air-conditioning, heating, or ventilation.

Challenges and Opportunities in Implementing IoT-enabled Smart Grids

Implementation of the IoT in smart grids comes with its own set of challenges, which open up opportunities for IT service providers.

Data leakage: Appliance usage data collected by smart grids and stored in the utilities central server is accessible to employees and regulators and increases vulnerability to threats. For instance, burglars can access air-conditioning usage data of a home, understand if residents are in or out and stage a break in.
Cyber-attacks: Cyber-attackers can manipulate the data transferred in a grid, forcing sensors to make incorrect decisions, causing widespread equipment damage and financial losses. The Stuxnet worm was used to corrupt the PLC circuit and hamper machinery operation in Iran, damaging a fifth of Iran’s nuclear centrifuge.

Unreliable internet connectivity: In order to ensure smooth smart grid operations, utilities need uninterrupted and fast connectivity, and may try to create their own network infrastructure for critical appliances, incurring high implementation costs.

Lack of data management capability: It is estimated that 116 million smart meters will be sold globally by 2023. Transferring, storing, and analyzing such huge amounts of data will require data center and data analytics software implementation capabilities.

Scope of IT Services in IoT-enabled Smart Grids

There are several opportunities for IT service providers to participate in the implementation of IoT-enabled smart grids.

Solution for IPV6 mapping: Legacy technologies such as X10, European Installation Bus, RFID, and Controller Area Network are not compatible with IPv6. Service providers can define the IPv6 mapping process for native addressing of the loads and other devices connected to the grid by the IoT.

Data analysis software: The IoT provides access to meaningful insights and instruction stimuli for near real-time demand response management and load management in a smart grid. Service providers can create efficient analytics software to analyze data streams generated by IoT sensors and send feedback to the grid for further necessary action.

Security solutions: Wireless devices are prone to virus attacks leading to data distortion and legal complications for the utilities. Service providers can create effective security solutions.

Data center services: The huge volume of data generated by a smart grid has to be stored and accessed dynamically. Service providers can supply cloud-based data storage facilities for effective smart grid implementation.
Prosumers contribute to the grid through household renewable generation units such as rooftop solar plants. On a bright sunny day, when there is a surge in power supplied by such prosumers, the grid should be able to best utilize this extra power. Artificial Intelligence can play a crucial role in this aspect by predicting the actions of various players and simulating the cascading effect they will create.

Network topology: Smart meters share data with IoT devices in a home setup using network topology. This data allows consumers to conserve energy and lower their utility bills. As different countries use different network topology standards, service providers can develop more efficient systems.

Artificial intelligence: A smart grid includes a large number of unconnected discrete objects (such as smart meters, smart sensors, wireless controllers and others), the output of which produces a ripple effect on the grid, impacting other players.

Artificial intelligence service providers can:

- Enable discrete grid objects to alter their power consumption in response to dynamic price changes
- Develop simulation and prediction tools to measure the system-wide ripple effect of deploying pricing mechanisms and energy management processes

Conclusion

Understanding the Implications before Implementation

While the IoT can lead to large scale improvements, some technical, legal, and economic aspects have to be dealt with carefully.

From a technical aspect, new software is required to efficiently analyze the myriad amount of data that will be generated by thousands of IoT sensors. In addition, internet connectivity must be economically viable, stable, and pervasive, and should comprise innovative routing algorithms for error-free data transfer.

We need to develop new standards to support automation for widespread adoption of IoT. However, given that many countries are starting to roll out smart grid programs, service providers that step in at this stage will get an irrevocable early mover advantage.

References

About The Authors

Subhadip Mahalanabish
Subhadip Mahalanabish provides support for developing requests for proposals, undertaking account growth initiatives, and understanding the industry impact of new disruptive technologies, among other initiatives.

Anindya Pradhan
Anindya Pradhan has over 17 years of consulting experience in the Utility sector, and has worked in the US, Canada, UK, Europe, Australia, and India.

Aniruddha Mukherjee
Aniruddha Mukherjee has been associated with TCS for over 25 years, and has worked in several delivery projects spanning multiple verticals.

About TCS’ Utilities Business Unit

With over two decades of experience in the Utilities industry, TCS partners with more than 90 energy and utility organizations across the globe, supporting more than 75 million water consumers, 70 million electricity consumers, and 20 million gas consumers. We offer an integrated suite of services and domain-led solutions across the electricity, gas, and water utility value chain, and, as a true partner, we work closely with utilities during difficult times of inclement weather or disaster.

The utilities industry value chain is changing: generation is becoming distributed, grids are becoming bi-directional, and energy retail is becoming more focused on customer experience and new services. We partner with utilities to help them reimagine their businesses for a new paradigm that uses digital technologies.

In 2015, IDC MarketScape recognized TCS as a ‘Market Leader’ in its assessment of ‘Global Professional Services Firms for Utilities Customer Operations’. TCS delivers significant advantages to its customers based on the expertise of its Utilities Innovation Network, a dynamic tank of global consultants from technology practices, industry domains, program management, and strategy and change consulting.

Contact

Visit TCS’ Utilities unit page for more information
Email: Utilities.Marketing@tcs.com

Subscribe to TCS White Papers

Feedburner: http://feeds2.feedburner.com/tcswhitepapers

About Tata Consultancy Services Ltd (TCS)

Tata Consultancy Services is an IT services, consulting and business solutions organization that delivers real results to global business, ensuring a level of certainty no other firm can match. TCS offers a consulting-led, integrated portfolio of IT and IT-enabled, infrastructure, engineering and assurance services. This is delivered through its unique Global Network Delivery Model™, recognized as the benchmark of excellence in software development. A part of the Tata Group, India’s largest industrial conglomerate, TCS has a global footprint and is listed on the National Stock Exchange and Bombay Stock Exchange in India.

For more information, visit us at www.tcs.com