Skip to main content
Skip to footer
塔塔咨询服务 塔塔咨询服务
  • 我们的服务
  • 我们是谁
  • 新闻中心
  • 客户案例
  • 职业发展
联系我们
TCS全球
tata.comtata.com在新的标签页中打开
  • 概况 按Tab键查看子菜单项

    以技术创新引领企业转型与升级

    塔塔咨询服务是全球领先的IT咨询、服务和商业解决方案的公司,已助力大型企业转型之旅超过50年。

    了解TCS服务范围
  • 行业
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
概况
  • 行业 expand here
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务 expand here
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
    • 概况 按Tab键查看子菜单项

      我们致力于向上向善,推动积极变化,造福人人。

      我们专业的、坚定的团队每天都在努力,将我们共同的信念付诸行动。我们运用创新和集体知识,创造出非凡的成就。

      了解TCS的优势
    • 关于我们
      • 企业可持续发展
      • 多样性、公平性和包容性
      • 企业社会责任
      • The TCS Way
      • 合作伙伴
      • 体育赞助
    概况
  • 关于我们 expand here
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 合作伙伴
    • 体育赞助
    • 概况 按Tab键查看子菜单项

      新闻动态

      发现塔塔咨询服务的最新资讯、活动和公告。

      开始探索
    • 新闻中心
    概况
  • 新闻中心
    • 概况 按Tab键查看子菜单项

      客户案例

      TCS在过去的50多年中持续同许多全球化大企业合作,助力其业务转型之旅。

      开始探索
    • 客户案例
    概况
  • 客户案例
    • 概况 按Tab键查看子菜单项

      专业成就非凡

      在TCS,我们相信卓越的工作始于聘用、培养和激励最优秀的人才 — 来自各行各业。

      发现职位
    • 职业发展
    概况
  • 职业发展
  • 塔塔咨询服务 塔塔咨询服务 Opens in new tab tata.com tata.com在新的标签页中打开 Search
    我们的服务
    • 概况 按Tab键查看子菜单项

      以技术创新引领企业转型与升级

      塔塔咨询服务是全球领先的IT咨询、服务和商业解决方案的公司,已助力大型企业转型之旅超过50年。

      了解TCS服务范围
    • 行业
      • 银行和金融服务
      • 消费品与零售
      • 生命科学与医疗健康
      • 高科技
      • 制造业
      • 旅游和交通业
    • 服务
      • 云计算
      • 智能商业运营
      • 咨询
      • 网络安全
      • 数据与分析
      • 企业应用软件
      • 物联网和数字化工程
      • 可持续发展
    概况
  • 行业 expand here
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务 expand here
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
  • 我们是谁
    • 概况 按Tab键查看子菜单项

      我们致力于向上向善,推动积极变化,造福人人。

      我们专业的、坚定的团队每天都在努力,将我们共同的信念付诸行动。我们运用创新和集体知识,创造出非凡的成就。

      了解TCS的优势
    • 关于我们
      • 企业可持续发展
      • 多样性、公平性和包容性
      • 企业社会责任
      • The TCS Way
      • 合作伙伴
      • 体育赞助
    概况
  • 关于我们 expand here
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 合作伙伴
    • 体育赞助
  • 新闻中心
    • 概况 按Tab键查看子菜单项

      新闻动态

      发现塔塔咨询服务的最新资讯、活动和公告。

      开始探索
    • 新闻中心
    概况
  • 新闻中心
  • 客户案例
    • 概况 按Tab键查看子菜单项

      客户案例

      TCS在过去的50多年中持续同许多全球化大企业合作,助力其业务转型之旅。

      开始探索
    • 客户案例
    概况
  • 客户案例
  • 职业发展
    • 概况 按Tab键查看子菜单项

      专业成就非凡

      在TCS,我们相信卓越的工作始于聘用、培养和激励最优秀的人才 — 来自各行各业。

      发现职位
    • 职业发展
    概况
  • 职业发展
  • 联系我们
    TCS全球
    tata.com tata.com Opens in new tab
    Top Results
    Showing
    10
    01 - 07
    • Data Storage and Analytics
    • Article

    Clean and lean data is your best bet

    You have these already downloaded

    We have sent you a copy of the report to your email again.

    Highlights

    • If the stored data is not clean and not properly stored in data sources, the chances of delays and errors creeping up on the user interface skyrocket. 
    • Data analytics will rely on data storage hygiene best practices to serve the needs of multiple users quickly, accurately, and in near real-time.

    In this article

    Importance 页面内
    Benefits 页面内
    Conclusion 页面内
    Insights 页面内
    Importance 页面内
    Benefits 页面内
    Conclusion 页面内
    Insights 页面内
    Back to top Go to top
    In this article页面内
    Go to top
    Importance Benefits Conclusion Insights

     

    Almost every organization is data-oriented now, and they understand the applications and benefits of data analytics in the decision-making process. Every year, an increasingly large amount of data gets generated across the globe. In the year 2020, 64.2 Zettabytes of data were generated globally[1]. This large corpus of data necessitates efficient storage mechanisms and logic to keep the data available and error-free. 

    Dirty data can lead to loss of revenue and wastage of time as it may point stakeholders in the wrong direction. Businesses undergo heavy losses due to poor data quality. IBM sources peg this number at $3.1 trillion annually; and these are just the US numbers. [2]. 

    Data analytics works by feeding processed data through code logic into a user-friendly interface of an analytics tool. Therefore, if the stored data is not clean and not properly stored in data sources, the chances of delays and errors creeping up on the user interface skyrocket. 

    Data storage hygiene best practices

    Data analytics will rely on data storage hygiene best practices to serve the needs of multiple users quickly, accurately, and in near real-time.

    Data audits: The most crucial aspect of data storage hygiene is to make sure that organizations regularly audit the data and identify the issues that may be prevalent in it. There might be multiple issues, and it may not always be feasible to fix them all, but with a data audit process in place, issues can be prioritized.

    Such processes lead to many benefits. Primarily, the benefit applies to a scaled-up storage system, where the data is stored across multiple sources. They interact through pipelines and scheduling mechanisms, and there might be expected or unintended data delays across the sources. 

    With a data auditing process in place, you can not only identify issues with your data but can also identify the issues with the data sources and which sources no longer are relevant to your system. You can manage data cleanliness as your use cases evolve. 

    Over time, you can use automated data auditing tools which can scan your data storage and list out audit results automatically, so it's easier to maintain.

    Removal of redundant data: As more people begin to work on data maintenance and analytics, multiple data tables and data variables get added over time to fit specific data analytics cases. These tables and variables might end up storing the same data points, leading to redundancy and overlaps. 

    In addition, data sources get plagued by unnecessary, unused data that gets fed into the storage and processing systems. Thus, as part of data storage hygiene, removing redundant data frees up storage space, which can be used for more relevant purposes. 

    Removal of redundant and unnecessary data also reduces the time lost in processing this data. It also leads to code maintenance so that data overlaps are mitigated too.

    Keeping data updated: While there is continual inflow of data, it gets outdated too. This can happen whenever data sources sync or when some user-driven changes render the previously captured data obsolete. 

    If analysts work with obsolete data it can lead to undesirable outcomes in their analysis, ultimately impacting revenue and leading to rework. Identifying that the data has gone obsolete and keeping automated checks in place to capture such identification can lead to building systems that automatically refresh data and thus keeps the data relevant and ready for use.

    Standardization of data entry and maintenance: Data entry is not restricted to a dedicated group of people anymore; it is now done by every user. While code logic needs to be present to ensure the entered data is correctly captured, and fed into the data storage, it is also important to set up a standardized data entry and maintenance process. 

    This would identify incorrect data at the entry stage, and alert systems would track such data errors and flag them. The data auditing systems could then read these flags and utilize them to clean up the data. 

    A standardized data entry and maintenance process would help with data storage hygiene from the get-go, easing the pressure from the entire storage hygiene setup. Findings from this process can also be used to educate users responsible for data entry so that user-driven errors can be controlled and fixed.

    Insights

    Want to invest in crypto? Data analytics holds the key

    Conclusion

    The diagnosis and fixing of errors in complex data cuts on an analytics tool would take a long time, causing a bottleneck in the data-driven analysis and decision-making process. 

    Hence, it is important for organizations to focus on data storage hygiene for an interrupted, improved data analytics process.

    Explore more insights

    1/3

    How predictive analytics is saving countless lives

    报告 | 01 Sep 2022   Opens in new tab
    2/3

    How data analytics can change crypto investment forever

    报告 | 30 Aug 2022   Opens in new tab
    3/3

    How fintech companies fight fraud with data analytics

    报告 | 30 Aug 2022   Opens in new tab
    行业
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
    服务
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
    前沿洞察
    • Health & Wellness
    • 网络安全
    • 云计算
    • 元宇宙
    • 区块链
    • 可持续发展
    • 人工智能和机器学习
    • 工作的未来
    • 数据存储和分析
    • 物联网
    关于我们
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 体育赞助
    • 合作伙伴
    更多信息
    • 新闻动态
    • 招贤纳士
    Tata consultancy services
    ©2023 TATA Consultancy Services Limited
    ©2023 TATA Consultancy Services Limited
    • 隐私政策
    • Cookie政策
    • 免责声明
    • 安全政策
    • 定制Cookie
    更多
    • Facebook在新的标签页中打开 Facebook
    • Youtube在新的标签页中打开 Youtube
    • Twitter在新的标签页中打开 Twitter
    • Instagram在新的标签页中打开 Instagram
    • linkedin在新的标签页中打开 linkedin
    联系我们 联系我们
    有什么可以帮到您?
    告诉我们您在寻找什么样的服务或者信息,我们会帮您找到合适的人来跟进。
    售前咨询
    投资者信息
    Accessibility Adjustments

    Theme

    Font size

    A
    DEFAULT
    A

    Line height

    DEFAULT