Skip to main content
Skip to footer
塔塔咨询服务 塔塔咨询服务
  • 我们的服务
  • 我们是谁
  • 新闻中心
  • 客户案例
  • 职业发展
联系我们
TCS全球
tata.comtata.com在新的标签页中打开
  • 概况 按Tab键查看子菜单项

    以技术创新引领企业转型与升级

    塔塔咨询服务是全球领先的IT咨询、服务和商业解决方案的公司,已助力大型企业转型之旅超过50年。

    了解TCS服务范围
  • 行业
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
概况
  • 行业 expand here
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务 expand here
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
    • 概况 按Tab键查看子菜单项

      我们致力于向上向善,推动积极变化,造福人人。

      我们专业的、坚定的团队每天都在努力,将我们共同的信念付诸行动。我们运用创新和集体知识,创造出非凡的成就。

      了解TCS的优势
    • 关于我们
      • 企业可持续发展
      • 多样性、公平性和包容性
      • 企业社会责任
      • The TCS Way
      • 合作伙伴
      • 体育赞助
    概况
  • 关于我们 expand here
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 合作伙伴
    • 体育赞助
    • 概况 按Tab键查看子菜单项

      新闻动态

      发现塔塔咨询服务的最新资讯、活动和公告。

      开始探索
    • 新闻中心
    概况
  • 新闻中心
    • 概况 按Tab键查看子菜单项

      客户案例

      TCS在过去的50多年中持续同许多全球化大企业合作,助力其业务转型之旅。

      开始探索
    • 客户案例
    概况
  • 客户案例
    • 概况 按Tab键查看子菜单项

      专业成就非凡

      在TCS,我们相信卓越的工作始于聘用、培养和激励最优秀的人才 — 来自各行各业。

      发现职位
    • 职业发展
    概况
  • 职业发展
  • 塔塔咨询服务 塔塔咨询服务 Opens in new tab tata.com tata.com在新的标签页中打开 Search
    我们的服务
    • 概况 按Tab键查看子菜单项

      以技术创新引领企业转型与升级

      塔塔咨询服务是全球领先的IT咨询、服务和商业解决方案的公司,已助力大型企业转型之旅超过50年。

      了解TCS服务范围
    • 行业
      • 银行和金融服务
      • 消费品与零售
      • 生命科学与医疗健康
      • 高科技
      • 制造业
      • 旅游和交通业
    • 服务
      • 云计算
      • 智能商业运营
      • 咨询
      • 网络安全
      • 数据与分析
      • 企业应用软件
      • 物联网和数字化工程
      • 可持续发展
    概况
  • 行业 expand here
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
  • 服务 expand here
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
  • 我们是谁
    • 概况 按Tab键查看子菜单项

      我们致力于向上向善,推动积极变化,造福人人。

      我们专业的、坚定的团队每天都在努力,将我们共同的信念付诸行动。我们运用创新和集体知识,创造出非凡的成就。

      了解TCS的优势
    • 关于我们
      • 企业可持续发展
      • 多样性、公平性和包容性
      • 企业社会责任
      • The TCS Way
      • 合作伙伴
      • 体育赞助
    概况
  • 关于我们 expand here
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 合作伙伴
    • 体育赞助
  • 新闻中心
    • 概况 按Tab键查看子菜单项

      新闻动态

      发现塔塔咨询服务的最新资讯、活动和公告。

      开始探索
    • 新闻中心
    概况
  • 新闻中心
  • 客户案例
    • 概况 按Tab键查看子菜单项

      客户案例

      TCS在过去的50多年中持续同许多全球化大企业合作,助力其业务转型之旅。

      开始探索
    • 客户案例
    概况
  • 客户案例
  • 职业发展
    • 概况 按Tab键查看子菜单项

      专业成就非凡

      在TCS,我们相信卓越的工作始于聘用、培养和激励最优秀的人才 — 来自各行各业。

      发现职位
    • 职业发展
    概况
  • 职业发展
  • 联系我们
    TCS全球
    tata.com tata.com Opens in new tab
    Top Results
    Showing
    10
    01 - 07
    • Data Storage and Analytics
    • Article

    Data analytics is a fintech fraud buster

    You have these already downloaded

    We have sent you a copy of the report to your email again.

    Highlights

    • Machine learning and automation improve the efficiency of fintech employees. Data can be analyzed to yield precious insights.
    • With machine learning, all financial transactions can be examined for potential risk. 
    • For fintech companies, the road ahead is filled with prospects and challenges. AI can be their reliable partner in this journey.

    In this article

    AI & Data Analytics 页面内
    Fraud Analytics 页面内
    The benefits 页面内
    Machine learning 页面内
    The future 页面内
    AI & Data Analytics 页面内
    Fraud Analytics 页面内
    The benefits 页面内
    Machine learning 页面内
    The future 页面内
    Back to top Go to top
    In this article页面内
    Go to top
    AI & Data Analytics Fraud Analytics The benefits Machine learning The future

     

    How Financial Companies Use AI and Data Analytics

    Data analytics have helped fintech companies make significant progress

    Today, Artificial Intelligence plays a vital role in the operations of banks and other finance companies. Technology has enhanced personalization, insights, and customer service.

    As Brett King, the financial services influencer, says, “The best advice and service in financial services happens in real-time and is based on customer behaviour, using principles of Big Data, mobility and gamification.”

    To begin with, machine learning and automation improve the efficiency of fintech employees. Data can be analyzed to yield precious insights.

    These advances have helped fintech companies make significant progress. Yet another area in which AI and data analytics have significantly contributed is fraud detection and prevention.

    The repercussions and costs of a data breach have reached an all-time high. Among the causes are: compromised credentials, phishing and cloud misconfiguration. That’s not all. There's been a corresponding consistent rise in banking scams - here the greatest offenders are identity theft, and cyber-attacks.

    What is Fraud Analytics?

    Fraud analytics uses Big Data techniques to prevent online financial fraud

    It can detect and mitigate fraudulent activity while it is taking place. It can also predict future behavior and suggest preventive methods.

    With machine learning, all financial transactions, from start to finish, can be examined for potential risk. It starts with collecting and analyzing behavioral, device, and transactional data.

    For example:

    • Predictive analytics examines patterns for future fraud potential via unexpected events.

    • Visual analytics can monitor transactions for suspicious activity through dataset diagrams and dashboards.

    • Forensic analysis can examine the reasons for a fraud event and the relationship between factors causing it.

    Fraud analytics uses Big Data techniques to detect and mitigate fraudulent activity while it is taking place. 

    These techniques can be applied across all types of financial fraud: identity theft, credit card fraud, fake claims, embezzlement, etc. They protect consumer funds and enhance the reputation of the firm.

    The Benefits of Fraud Analytics

    For fintech enterprises, there are several benefits of deploying fraud analytics

    • With automation, all available transactions can be scanned for possible red flags.

    • Data from different sources can be unified for precise analysis.

    • The financial dimensions of anticipated fraud can be accurately forecasted.

    • Automated fraud-detection systems can reduce dependence on human resources and be cost-effective.

    • Machine learning systems enhance existing fraud prevention tools for better outcomes.

    • Fraud analytics increases the speed of fraud detection. Remedial measures can be taken as soon as possible.

    • Lessons from analytics tools can be applied for improved security protocols.

    Machine Learning Systems Versus Rule-based Systems

    Before AI and machine learning, financial companies used a rule-based approach to check fraud

    For example, transactions over a specific size or those occurring in unusual locations needed extra verification.

    Such rules were laid out after analyzing past patterns. They also relied on fraud detection scenarios by algorithms.

    Rule-based systems are straightforward. They add and adjust procedures manually. Often, they do not make use of all the data available.

    However, they remain essential. Rules can catch many apparent cases of fraudulent behavior.

    On the other hand, machine learning systems can quickly process large amounts of data. They can identify correlations to predict the likelihood of fraud. The chances of employee error are reduced. Decision-making becomes simpler.

    Because machine learning systems work in real-time, they can quickly minimize the impact of fraud. Verification measures can be diminished, and detection can be automatic.

    Rule-based systems can also miss new types of fraudulent activity. With predictive machine learning based on continuous streams of data, machine learning systems can spot old and new fraudulent schemes.

    Insights

    Data maturity requires a data-driven mindset

    The Future of Fraud Analytics

    As applications and algorithms become more sophisticated, more value can be derived from data and existing technology

    AI-driven behavioral analytics will further identify suspicious patterns across activities. When the algorithmic process becomes more visible and understandable, employees will engage with it in more efficient and valuable ways.

    The relevant data will also increase as more customers shift to digital for their financial transactions, further heightening the efficacy of machine learning to prevent fraud.

    For fintech companies, the road ahead is filled with prospects and challenges. AI can be their reliable partner in this journey.

    Explore more insights

    1/3

    Data storage hygiene determines the success of data analytics

    报告 | 01 Sep 2022   Opens in new tab
    2/3

    How predictive analytics is saving countless lives

    报告 | 01 Sep 2022   Opens in new tab
    3/3

    How data analytics can change crypto investment forever

    报告 | 30 Aug 2022   Opens in new tab
    行业
    • 银行和金融服务
    • 消费品与零售
    • 生命科学与医疗健康
    • 高科技
    • 制造业
    • 旅游和交通业
    服务
    • 云计算
    • 智能商业运营
    • 咨询
    • 网络安全
    • 数据与分析
    • 企业应用软件
    • 物联网和数字化工程
    • 可持续发展
    前沿洞察
    • Health & Wellness
    • 网络安全
    • 云计算
    • 元宇宙
    • 区块链
    • 可持续发展
    • 人工智能和机器学习
    • 工作的未来
    • 数据存储和分析
    • 物联网
    关于我们
    • 企业可持续发展
    • 多样性、公平性和包容性
    • 企业社会责任
    • The TCS Way
    • 体育赞助
    • 合作伙伴
    更多信息
    • 新闻动态
    • 招贤纳士
    Tata consultancy services
    ©2023 TATA Consultancy Services Limited
    ©2023 TATA Consultancy Services Limited
    • 隐私政策
    • Cookie政策
    • 免责声明
    • 安全政策
    • 定制Cookie
    更多
    • Facebook在新的标签页中打开 Facebook
    • Youtube在新的标签页中打开 Youtube
    • Twitter在新的标签页中打开 Twitter
    • Instagram在新的标签页中打开 Instagram
    • linkedin在新的标签页中打开 linkedin
    联系我们 联系我们
    有什么可以帮到您?
    告诉我们您在寻找什么样的服务或者信息,我们会帮您找到合适的人来跟进。
    售前咨询
    投资者信息
    Accessibility Adjustments

    Theme

    Font size

    A
    DEFAULT
    A

    Line height

    DEFAULT