Streamlining ML-based Model Management Framework: A BFS Industry Perspective
Leading the way in innovation for over 50 years, we build greater futures for businesses across multiple industries and 131 countries.
Our expert, committed team put our shared beliefs into action – every day. Together, we combine innovation and collective knowledge to create the extraordinary.
We share news, insights, analysis and research – tailored to your unique interests – to help you deepen your knowledge and impact.
At TCS, we believe exceptional work begins with hiring, celebrating and nurturing the best people — from all walks of life.
You have these already downloaded
We have sent you a copy of the report to your email again.
Ensuring interpretability and reduced time-to-market for new-age ML models
The adoption of artificial intelligence (AI) and machine learning (ML) has gone up manifold across the value chain of financial risk management models with the aim of driving efficiency and diverse data-driven analytics. With the increasing use of AI in risk management, institutions need to reimagine the traditional model risk management framework and review critical aspects in order to reduce time-to-market for new-age ML models and ensure optimal performance.
The three critical components of ML model risk management are:
Data validation: Discovery, preprocessing, feature engineering, and drift monitoring for the model input data
Outcome validation: Cross-validation with various sets of data to validate outcome and assess performance deviation
Model oversight and control: Adopt a resilient model oversight framework by defining stringent model design development policies, periodic reviews, and materiality scoring systems
Find out more