At TCS, we don’t just help businesses transform. We help them become perpetually adaptive enterprises, built to evolve continuously and confidently in a world of constant change.
We deliver excellence and create value for customers and communities - everyday. With the best talent and the latest technology we help customers turn complexity into opportunities and create meaningful change.
Point of views, research, studies - on the latest themes - to help you expand your knowledge and be future ready.
At TCS, we believe exceptional work begins with hiring, celebrating and nurturing the best people — from all walks of life.
Upasana Tiwari, Researcher, TCS Research
Swapnil Bhosale, Researcher, TCS Research
Rupayan Chakraborty, Senior Scientist, TCS Research
Sunil Kumar Kopparapu, Principal Scientist, TCS Research
Deep lung auscultation using acoustic biomarkers
Deep lung auscultation using acoustic biomarkers (extracted using discrete wavelet transform and deep-encoded features from a pre-trained audio event detection model) for abnormal respiratory sound event detection.
Lung auscultation is a non-invasive process of distinguishing normal respiratory sounds from abnormal ones by analyzing the airflow along the respiratory tract. With developments in deep learning and wider access to anonymized data, automatic detection of specific sounds such as crackles and wheezes have been gaining popularity. We propose to use two sets of diversified acoustic biomarkers extracted using discrete wavelet transform (DWT) and deep-encoded features from the intermediate layer of a pre-trained audio event detection (AED) model, trained using sounds from daily activities.
The first set of biomarkers highlight the time frequency localization characteristics obtained from DWT coefficients; whereas, the second set of deep encoded biomarkers captures a generalized reliable representation, and thus indemnifies the scarcity of training samples and the class imbalance in dataset. Furthermore, the ensemble of DWT based time-frequency localization and generic device agnostic deep embedding resulted into complimenting each other. We evaluated our approach on [International Conference on Biomedical Health Informatics] ICBHI-2017 Challenge dataset. The results shows that our system clearly outperforms the state of the art with a significant margin.
Biodiversity: The Next Frontier for Business Growth
Automated Compliance: Driving Software-Defined Vehicle Forward
A robust architecture for real-time satellite sensing data
A Journey from Software Development to Visual Intelligence Research